A

Report

On

Energy Audit

For

Ahmednagar Jilha Maratha Vidya Prasharak Samaj's

Shri Chhatrapati Shivaji Maharaj College of Engineering,

Ahmednagar

Prepared by

Sarvashree Technogreen Private Limited,

Plot No. 16, Link Road, Near Sawali, Bhushannagar, Kedgaon, Ahmednagar - 414001 Contact No. 7020756278

May - 2023

ACKNOWLEDGEMENT

We express our sincere gratitude to the management of for Ahmednagar Jilha Maratha Vidya Prasarak Samaj's, Shri Chhatrapati Shivaji Maharaj College of Engineering for giving us an opportunity to carry out the project of Energy Audit.

We are extremely thankful to all the staffs for their support in carrying out the studies and for input data, and measurements related to the project of Energy audit. We also congratulate our Energy audit team members for successfully completing the assignment in time and making their best efforts to add value.

We do hope that you will find the recommendations given in this report will be useful to save energy. We welcome any suggestions from your side as to serve you better.

Mr.Sujitkumar Pote Sarvashree Technogreen Private Limited

DISCLAIMER

Energy Audit Team has prepared this report for **Ahmednagar Jilha Maratha Vidya Prasarak Samaj's, Shri Chhatrapati Shivaji Maharaj College of Engineering** based on input data submitted by the representatives of Campus complemented with the best judgment capacity of the expert team. The audit was conducted on the sample basis by visiting the campus and interacting with the various stakeholders. Audit was conducted by interviewing the concerned persons, observing onsite implementation and verifying the documents and records.

While all reasonable care has been taken in its preparation, details contained in this report have been compiled in good faith based on information gathered.

It is further informed that the recommendations are arrived following best judgments and no representation, warranty or undertaking, express or implied is made and no responsibility is accepted by Audit Team in this report or for any direct or consequential loss arising from any use of the information, statements or forecasts in the report.

Mr. Sujitkumar Pote Sarvashree Technogreen Private Limited

Sr. No.	Contents	Page No.	
	Title	01	
	Acknowledgement	02	
	Disclaimer	03	
	Contents	04	
	List of tables	05	
	List of figures	05	
	List of abbreviations	06	
	List of units	06	
1	Energy Consumption Profile	07	
1.1	About Shri Chhatrapati Shivaji Maharaj College of Engineering	07	
2	Approach & Methodology	09	
2.1	Approach	09	
2.2	Methodology		
2.3	List of Equipment & Instruments Used for Energy Audit		
3	Historical Data Analysis	11	
3.1	Electric supply and Consumption	11	
3.2	Study of Variation of Monthly Units consumption, Electricity bill & Power Factor	13	
3.3	General Observations based on electricity bill	14	
4	Actual load measurement	15	
4.1	Appliances/lighting load	15	
4.2	Lab equipment load yearly	22	
4.3	Solar power generation	26	
4.4	Merits/Existing Features of Energy Saving	29	
5	Study of air conditioners	30	
6	Energy Conservations Proposal	31	
6.1	Providing Energy Saver Circuit to the Air Conditioners	31	
6.2	Replacing Fluorescent Tube Lights (FTL) with LED Tube Lights	31	
6.3	Executive recommendations	32	
7	References	33	

CONTENTS

List of Tables

Sr.No.	Contents	Page No.
Table 1	Assignment	07
Table 2	Scope of Study	09
Table 3	Total Cost of Energy Consumed by Institute in the Last 12 Months	11
Table 4	Variation in Units Consumption & Power Factor (PF)	12
Table 5	Appliances/lighting load	15
Table 6	Lab equipment load yearly	22
Table 7	Solar power generation data	26

List of Figures

Sr.No.	Contents	Page No.
Fig.1	Methodology flow	09
Fig.2	Percentage of power utilized	11
Fig.3	Electricity consumption month wise	13
Fig.4	Billed amount in past year(monthly)	13

List of Abbreviations

SEC	-	Specific Energy Consumption
List of Units		
°C	-	Degree Celsius
CFM	-	Cubic Feet per Minute
СМН	-	Cubic Meter per Hour
LPM	-	Litres Per Minute
Kg/cm ²	-	Kilogram per centimetre square
kW	-	Kilo Watt
kWh	-	Kilowatt hour
KOE	-	Kg of Oil equivalent
m ³ /hr.	-	Meter cube per hour
Nm ³ /hr.	-	Normal Meter cube per hour
MW	-	Mega Watt
MWh	-	Megawatt hour

1. ENERGY CONSUMPTION PROFILE

The working details of assignment are as follows.					
Project	Energy Audit				
Client	Ahmednagar Jilha Maratha Vidya Prasarak Samaj's, Shri Chhatrapati Shivaji Maharaj College of Engineering.				
Industry Private Educational Engineering Institute					
Contact	Mr. Nikam Sir				
Site	Shri Chhatrapati Shivaji Maharaj College of Engineering, Ahmednagar- Kalyan Road, Nepti, Tal and Dist Ahmednagar				
Consultant	Sarvashree Technogreen Private Limited				
Duration	12-05-2023 to 15-05-2023				
Project Work Scope	Detailed Energy Audit in the institute to study energy consumption and assess the loss in the system.				
Report	This report gives Detail Energy consumption, suggestions to minimize energy losses				

The working details of assignment are as follows:

Table.1.Assignment

1.1 About Shri Chhatrapati Shivaji Maharaj College of Engineering

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's, Shri Chhatrapati Shivaji Maharaj College of Engineering, is affiliated by Savitribai Phule Pune University. The journey of Shri Chhatrapati Shivaji Maharaj College of Engineering began on year 2011 with a vision and mission of Shri Chhatrapati Shivaji Maharaj College of Engineering "to impart quality education through effective teaching learning methodologies".

Today, the college has four faculties – Civil Engineering, Mechanical Engineering, Electronic and Telecommunication Engineering and Computer Engineering. This is also certified by ISO 9001:2015.

Source of Energy:

Shri Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar, uses Energy in following forms:

a. Electricity from MSEDCL :

Shri Chhatrapati Shivaji Maharaj College of Engineering receives Electricity from Ahmednagar, Nepti Circle.

b. High Speed Diesel Generator (HSDG):

HSD is used as a fuel for Diesel Generator which is run whenever power supply from MSEDCL is not available. Kirloskar 15KW and GPWLL 62.5KVA.

c. Roof Top PV Solar System (60 KW) installed on terrace of Annex Building.

Following are the major consumers of electricity in the facility:

Computers	Xerox machines
Lighting	CCTV
Air-Conditioning	UPS
Fans	LCD Projector
Other Lab Equipment	Router system
Printers	Flood light
	Pumping motor

2. APPROACH AND METHODOLOGY

2.1 Approach

A team of 4 engineers were involved in carrying out the study; the scope of study was as follows:

- Identify areas of opportunity for energy saving and recommend an action plan to bring down total energy cost
- Conduct energy performance evaluate on and process optimization on study
- Conduct efficiency test of equipment and make recommendations for replacement (if required) by more efficient equipment with projected benefits
- Suggest improved opera on & maintenance practices
- Provide details of investment for all the proposals for improvement
- Evaluate benefits that accrue through investment and payback period
- Analyse various energy conservation on measures and to prioritize based on the maximum energy saving & investment i.e. short, medium and long term.

- <u> </u>	
Prioritization	Payback Period
Short Term Project	Less than 6 months
Medium Term Project	Between 6 to 12 months
Long Term Project	More than 12 months

Table 2.Scope of Study

• Discuss with the plant personnel, the individual Energy Saving Projects (ESPs) for agreement for implementation.

2.2 Methodology

• The general methodology followed is captured in the following figure –

Figure 1. Methodology flow

The study was conducted in 3 stages:

- Stage 1: Walk through audit to understand process energy drivers, measurability and formula one of audit plan
- Stage 2: Detailed Energy audit
- Stage 3: Off-site work for data analysis and report preparation

2.3. List of Equipment & Instruments Used for Energy Audit:

The following portable instruments were used for data measurement:

- 3 phase Power Analyzer
- Single phase Power Analyzer
- Ultrasonic Water Flow Meter
- Anemometer
- Hygrometer
- Sling Hygrometer
- Digital Thermometer
- Infrared Thermometer
- Pressure gauge
- Thermal Imager
- Flue Gas Analyzer
- Lux Meter

3. HISTORICAL DATA ANALYSIS

3.1 Electricity supply and consumption

The electricity consumed through MSEDC is Charges: Rs. 2,95,662.00/-

The Diesel as a thermal energy source is used mainly in DG Sets of

Total Consumption on of Diesel in the Apr-2022 to March-2023 was:

Total Diesel in Ltr.1,004

Cost of Diesel: Rs. 85,400.00/-

The Institute has a solar power generating system of .

Total Solar Generated Electricity by unit is 34781 KWH of cost approx.5,66,234.70/-

I	Electricity (INR)	Diesel (INR)	Solar Energy	Total Cost of Energy	% of electricity	% of Diesel	% of Solar
2,9	5,662.00	85,400.00	5,66,234.70	9,47,296.70	31.21	9.02	59.77

Table 3. Total Cost of Energy Consumed by Institute in the Last 12 Months

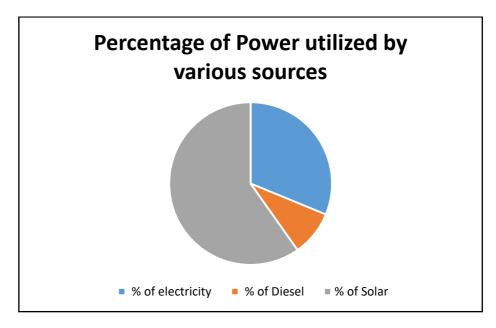


Fig.2 Percentage of Power utilized

3.2 Study of Variation of Monthly Units consumption, Electricity bill & Power Factor

Sr. No.	Month	Power Factor	Unit Consumption (KWH)	Bill Amount (RS)	Demand KVA
1.	April-22	0.99	1431	20978.85	16
2.	May -22	0.98	2294	29006.32	16
3.	June-22	0.96	2281	32589.26	16
4.	July-22	0.99	2163	31114.46	16
5.	August-22	0.99	1611	24714.76	16
6.	September-22	0.99	1807	26887.45	16
7.	October-22	0.99	1245	21657.49	16
8.	November-22	0.97	1241	22008.15	16
9.	December-22	0.99	1458	24472.71	16
10.	January-23	0.97	735	16638.48	16
11.	February-23	0.98	978	23264.69	16
12.	March-23	0.99	919	22329.39	16
	Average	0.98	1513	24638.50	16
	Yearly Total		18163	295662.01	

In this Chapter, we study the details of the 12 month Electricity Bills.

 Table No 4 Variation in Units Consumption & Power Factor (PF)

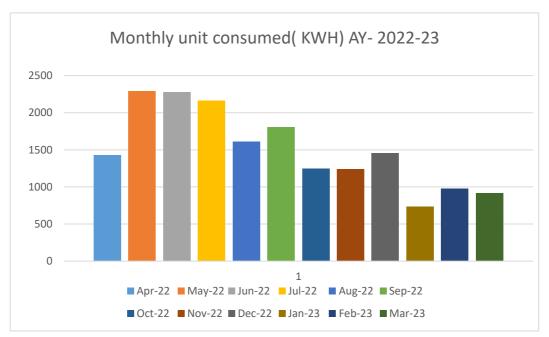


Figure 3. Electrical Energy Consumption month wise

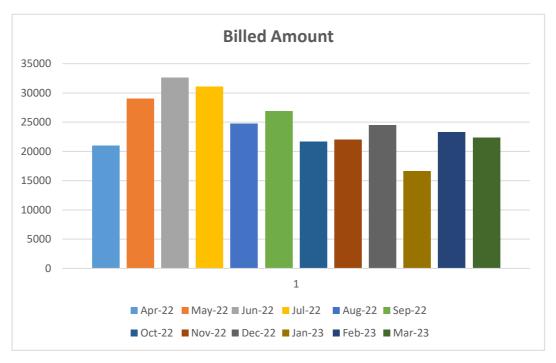


Figure 4. Billed Amount in last 12 months

- It can be seen from figure 1, that electricity consumption on in the month of May and June 22' is the highest. Average Power Factor in the period of Apr-22 to Mar-23 is 0.98. It is recommended to install Automatic Power Factor Control Panel to achieve Power Factor near to 1.00.
- It is recommended to have a regular check on the Power Factor to maintain it. Capacitors shall be tested every quarter and replaced if not working properly.

Conclusion: Variation of PF, The Power Factor to reduce the utility power bill. Most utility bills are influenced by KVAR usage. A good Power Factor provides a better voltage. Reducing the pressure on electrical distribution network. Reducing cable heating, cable over loading and cable losses. Reducing over loadings of control gears and switch-gears etc.

Whenever the average power factor over a billing cycle or a month, whichever is lower, of a High Tension consumer is below 90%, Penal charges shall be levied to the consumer at the rate of 2 % (two %) of the amount of monthly energy bill (excluding of Demand Charges, FOCA, Electricity Duty and Regulatory Liability Charge etc.)

For power factor of 0.99, the effective incentive will amount to 5% (five percent) reduction in the energy bill and for unity power factor; the effective incentive will amount to 7% (seven percent) reduction in the energy bill.

3.3 General Observations based on Electricity Bill

- 1. For College Campus the Contract Demand (CD) is 39.5 kVA and minimum billing Demand is less than 50% of the Contract Demand, Maximum Demand recorded whichever is higher. Since, the MD recorded is less than 18kVA.
- 2. The average electricity cost is Rs.16.28 considering the last twelve months average units and bill.
- 3. Average monthly Power Factor is maintained near P.F. 0.98.
- 4. Power factor is affected during June 2022 is 0.96, which need to improve power factor up to 0.9.

4. ACTUAL LOAD MEASUREMENT

4.1 APPLIANCES/LIGHTING LOAD

Sr No	Location	Name of Appliance	Power Rating (Watt)	Quantity	Power Consum ption (Watt)	Usage per Day Hr	Power Consu mption /day (Watt)
		Fan	80	2	160	2	320
		CFL	40	1	40	2	80
		LED	9	10	90	2	180
		PC	60	1	60	2	120
1	Principal Office	Printer HP1020	150	1	150	0.5	75
1	T meipar Onice	LED TV 43Inch	40	1	40	1	40
		AC 1 Tonn	1750	2	3500	1	3500
		CCTV	5	1	5	24	120
		Modem	5	1	5	3	15
	Principal Office Entrance	Fan	80	1	80	2	160
2		FTL	40	1	40	2	80
		LED	40	2	80	1	80
	Main Corridor	Electronic Bell	5	1	5	2	10
		Speaker	50	1	50	0.5	25
3		Router	100	1	100	3	300
		D-Link	5	1	5	3	15
		CCTV	5	2	10	24	240
		FTL	40	1	40	2	80
		FTL	40	2	80	2	160
		Fan	80	2	160	2	320
4	Conference Room	Projector	180	1	180	0.5	90
		AC 1 Tonn	1750	1	1750	2	3500
		FTL	40	4	160	1	160
		LED	18	2	36	2	72
5	Administration	Fan	80	4	320	2	640
5	Office	PC	80	7	560	0.5	280
		Printer	150	4	600	0.5	300
		CCTV	5	2	10	24	240

15	Concrete Technology Laboratory	FTL Incandescen t Bulb	40 60	2 1 2	40	2 1 1	40 120
14	Transportation Lab	FTL Fan	40 80	3 2	120 160	1 2	120 320
		Fan	80	3	240	2	480
13	Fluid Mechanics	Incandescen t Bulb	60	1	60	0	0
12	CE HOD Cabin	PC Printer	80 150	1 1	80 150	3 0.5	240 75
10		FTL	40	1	40	2	80
11	Geotechnical Laboratory	Fan	80	3	240	2	480
		Projector	150	1	150	0.5	75
		Scanner	150	1	150	2	300
10	IQAC Cell	PC Printer	80 150	5 2	400 300	0.5	400
10		Fan	80	3 5	240	2	480 400
		LED	9	4	36	2	72
	Sport Section	FTL	40	1	40	2	80
		Printer	150	2	300	0.5	150
-		PC	80	2	160	1	160
9		Fan	80	3	240	2	480
		LED	9	1	9	2	18
0		Fan	80	3	240	2	480
8	Gymnasium	FTL	40	3	120	1	120
		Printer	150	1	150	0.5	75
/	K00111 NO. 038	PC	80	1	80	1	80
7	Room No. 038	Fan	80	1	80	2	160
		FTL	40	1	40	1	40
		Router	150	2	300	2	600
		FTL	40	6	240	1	240
		CCTV	5	1	5	24	120
6	Ground Floor Corridor	LED Bulb Display	50 20	4	200 20	2	400 60
		Incandescen t Bulb	60	5	300	3	900
		D link	5	5	25	3	75
		Thumb Machine	15	1	15	0.5	7.5

		Fan	80	3	240	2	480
16	Project Lab, Room No. 109	Fan	80	2	160	2	320
		FTL	40	2	80	1	80
		LED	18	1	18	2	36
17	Strength of Material	Fan	80	3	240	2	480
	widterial	PC	80	1	80	1	80
		LED	9	1	9	2	18
		Fan	80	3	240	2	480
18	CAD Laboratory	PC LCD	80	16	1280	1	1280
10	CAD Laboratory	Printer	150	2	300	0.5	150
		Laptop	80	1	80	3	240
		Projector	150	1	150	0.5	75
19	Environmental Laboratory	FTL	40	2	80	1	80
		Fan	80	1	80	2	160
20	Geology	Fan	80	1	80	2	160
	Laboratory	Laptop	80	1	80	2	160
21	Classroom 106 to	Fan	80	32	2560	2	5120
	113	CCTV	5	8	40	24	960
22	MQC Laboratory	Fan	80	2	160	2	320
		Fan	80	1	80	2	160
23	Fluid Mechanics	Advance Hydraulic pump, 1HP/0.75w	0.75	1	0.75	2	1.5
		Fan	80	3	240	2	480
		FTL	40	1	40	1	40
24	IC Engine Laboratory	Fan	80	4	320	2	640
26	Theory of Machine Lab	Fan	80	2	160	2	320
		PC	80	1	80	1	80
27	Girls Common	Fan	80	2	160	3	480
	Room	FTL	40	1	40	1	40
28	Applied	Fan	80	3	240	2	480

	Thermodynamics						
30	Basic Electronics Lab	Fan	80	2	160	2	320
31	Digital System Laboratory	Fan	80	1	80	2	160
32	Electronic and Communication Lab 1	Fan	80	1	80	2	160
		FTL	40	2	80	1	80
34	Embedded & VLSL Lab	DLink Switch	5	1	5	2	10
	VLSL Lau	PC	80	8	640	1	640
		Fan	80	1	80	2	160
	Commutan Lab	FTL	40	2	80	1	80
35	Computer Lab E&TC	Fan	80	3	240	2	480
	Laic	PC	80	8	640	1	640
	Classroom	Fan	80	20	1600	2	3200
37		FTL	40	8	320	1	320
	45,146	PC	80	4	320	1	320
		CCTV	5	5	25	24	600
38	Physics	FTL	40	2	80	2	160
50	T HYSICS	Fan	80	3	240	2	480
	Electronics and	DTH Set Top	15	1	15	3	45
39	Telecommunicatio n Lab	Power Supply	15	1	15	3	45
		Fan	80	3	240	2	480
40	Room No. 135,	Fan	80	2	160	2	320
	137	PC	80	1	80	1	80
		Fan	80	6	480	2	960
		PC	80	40	3200	4	12800
41	Computer Center	CCTV	5	4	20	24	480
		D-Link Switch	5	4	20	2	40
40	Doom No. 122	Fan	80	1	80	2	160
42	Room No. 122	PC	80	6	480	1	480
		FTL	40	1	40	2	80
43	Room No. 122	Fan	80	1	80	2	160
		PC	80	4	320	1	320
44	Hardware Lab	Fan	80	1	80	2	160

	1	FTL	40	1	40	2	80
		PC	80	1	80	1	80
		BSNL Internet Router, Batteries 12v, 42Ah	10	3	30	3	90
		Modem	5	1	5	3	15
		Fan	80	3	240	2	480
45	Network Lab	PC	80	4	320	1	320
		Fan	80	3	240	2	480
		PC	80	18	1440	1	1440
46	Programming Lab	D-Link Switch	5	1	5	2	10
		CCTV	5	1	5	24	120
		PC	80	19	1520	1	1520
		Fan	80	4	320	2	640
		FTL	40	1	40	2	80
47	Computer Graphics lab	D-Link Switch Connector	5	1	5	2	10
		CCTV	5	1	5	24	120
		FTL	40	3	120	1	120
		PC	80	22	1760	4	7040
48	Network Lab	D-Link Switch Connector	5	1	5	2	10
		CCTV	5	1	5	24	120
		FTL	40	2	80	1	80
		Fan	80	3	240	2	480
		CCTV	5	2	10	24	240
49	Project Lab 1	PC	80	18	1440	4	5760
	I TOJECI LAU I	D-Link Switch Connector	5	1	5	2	10
		FTL	40	1	40	1	40
50	Project Lab 2	Fan	80	4	320	2	640
50		CCTV	5	2	10	24	240

		PC	80	28	2240	0.5	1120
		D-Link Switch Connector	5	1	5	2	10
		PC	80	2	160	1	160
		Fan	80	1	80	2	160
		FTL	40	1	40	1	40
		CCTV	5	1	5	24	120
51	Server Room	Power Supply 3.9A, 150- 235v,50- 60Hz	15	1	15	3	45
52	Yoga Meditation Hall	FTL	40	6	240	1	240
	First Floor	CCTV	5	8	40	24	960
53	Corridor	Display Board	80	1	80	1	80
		Xerox Machine	500	2	1000	1	1000
		Fan	80	10	800	2	1600
54	Library	FTL	40	2	80	1	80
		PC	80	8	640	1	640
		Printer	150	1	150	0.5	75
		CCTV	5	3	15	24	360
55	Tutorial Room	Router	100	1	100	3	300
55		FTL	40	1	40	1	40
		UPS Inverter 7.5KVA	750	2	1500	3	4500
56	UPS Room	Batteries 160 A	150	16	2400	24	57600
		Batteries 150 A	150	16	2400	24	57600
58	Water Cooler/RO/	150 Lit	150	2	300	2	600
59	Canteen	Referigerato r; 200 liter	430	1	430	24	10320
		FTL	40	6	240	3	720
		Fan	80	4	320	2	640

		Cooler Water	800	1	800	3	2400
60	Porch	FTL	40	1	40	3	120
00	Porch	CCTV	5	2	10	24	240
61	Commune	Outdoor Flood LED	200	4	800	5	4000
61	Campus	Pole Light LED	100	15	1500	5	7500
62	Entry Security	FTL	40	2	80	3	240
	Cabin	Fan	80	2	160	2	320
		CCTV	5	2	10	24	240
63	Main Gate	Outdoor Flood LED	150	1	150	10	1500
		FTL	40	15	600	8	4800
		Fan	80	15	1200	6	7200
	Second Floor	LED Bulb	12	3	36	8	288
64		Outdoor FTL	40	4	160	8	1280
	2 nd Floor Toilet	LED Bulb	9	4	36	8	288
	2 nd Floor Wash room	LED Bulb	9	4	36	8	288
			-			Daily (Watt)	246679
						Daily Kw	246.68
					Total Logd	Mont hly Kw	6413.6 5
					Load	Yearl y Kw	76963. 8

Table No.5 APPLIANCES/LIGHTING LOAD

4.2 LAB EQUIPMENT LOAD YEARLY

Sr No.	Location	Name of Appliance	Power Rating (Watt)	Qty	Power Consu mptio n (Watt)	Usage per Year (HR)	Power Consump tion/day (Watt)
		Sieve Shaker;0.5HP/0.37kw		1	370	18	6660
		Direct Share Testing M/c; 50Hz	300	1	300	18	5400
	Concrete	Compression Testing machine	500	1	500	18	9000
1	Technology	Oven;1.5kw	1500	1	1500	18	27000
	Lab	Vane Share Testing Machine	35	1	35	18	630
		Infrared Moisture Balance	300	1	300	18	5400
		Weighnig Machine 1kg	300	1	300	5	1500
	Hydraulics	Venturi/ Orifice meter Motor;0.25HP	186	2	372	2	744
	Lab	Bernollies Theorem Motor;0.25HP	186	1	186	2	372
2		Multitube Manometer Speed Controller;3PH, 380v	150	1	150	2	300
		Tilting Fumes;1.5Hp/1.1Kw	1100	1	1100	2	2200
		Centrifugal Pump; 440v	500	1	500	2	1000
		Energy Regulator;230v	300	1	300	2	600
		Marshall Stability Test	150	1	150	2	300
		Los Angel Test	0.75	1	0.75	2	1.5
	Geo	Ductility Test	500	1	500	2	1000
3	Technical Laboratory	Ring and Ball Testing Machine;2HP	1500	1	1500	2	3000
		Stipping Valve Test Apparatus; 230v	150	1	150	2	300
4	Concrete Technology	Weighing Machine 100kg	150	1	150	2	300

	Laboratory	Compression Testing machine,220v	600	1	600	2	1200
		Vibrating Machine;0.8HP	597	1	597	2	1194
		Vibrating Machine; 0.75HP	560	1	560	2	1120
F	Strength of Material	Tile Abrasion Testing Machine; 0.37kw	370	1	370	2	740
5	Laboratory	Torsion Testing, 1Hp	750	1	750	2	1500
		UTM 100 KN	1000	1	1000	2	2000
		Flocculator; 0.5HP	375	1	375	2	750
		Conductivity Meter, 230v	300	1	300	2	600
		COD, 1kw	1000	1	1000	2	2000
		Soxhlet Extraction Heater, 220v	300	1	300	2	600
		Flame Photometer, 220v	300	1	300	2	600
		Compressor, 220v	300	1	300	2	600
6	Environmenta 1 Laboratory	Weighing balance, 220v	300	1	300	2	600
		Microbial Colony Counter, 220v	300	1	300	2	600
		Oven Furnace, 2.5Kw	2500	1	2500	2	5000
		BOD Incubator, 0.75kw	750	1	750	2	1500
		High Volume Sampler, 0.75kw	750	1	750	2	1500
7	MQC & I.C Engine Lab	Reciprocating Pump Test, 0.5HP	375	1	375	2	750
		Pnumatic Trainer , 1HP	750	1	750	2	1500
		Gear Pump Rig	0.75	1	0.75	2	1.5
8	Fluid	Centrifugal Pump, 1HP/0.75w	0.75	1	0.75	2	1.5
	Mechanics	Impact Jet Apparatus, 0.5HP	375	1	375	2	750
		Turbo Kirloskar Pump, 3.7kw/5HP	3700	1	3700	2	7400

		Turbine Test Rig, 15HP	11190	1	11190	2	22380
		Incandescent Bulb	60	1	60	2	120
		Emmisivity Measurement Apparatus	300	1	300	2	600
9	Heat Transfer Lab	Flux Meter	300	1	300	2	600
	Lau	Pin Fin Appartus, 0.5HP	375	1	375	2	750
		Thermal Conductivity Meter	300	1	300	2	600
		Cam Analysis	500	1	500	2	1000
10	Tom Lab	Epicyclic Gear Train, 0.5HP	375	1	375	2	750
11	Girls Common Room	CFL	40	2	80	2	160
	Weighing Machine220gm	300	1	300	2	600	
		Weighing Machine120gm	300	1	300	2	600
		Dimmer, 8AMPS	180	1	180	2	360
		Dc Shunt, 50Hz	50	1	50	2	100
	Basic Electronic	3PH Induction Motor	750	1	750	2	1500
13		Slip Rig	300	1	300	2	600
	Lab	Squirrel Cage I.M 1 hp	750	1	750	2	1500
		DC Motor, 2HP	1500	1	1500	2	3000
		RF Motor 10 - 600MHZ	300	1	300	2	600
14	Wave Theory and Antenna Lab	Oscillator 500h,10- 600MHz	300	1	300	2	600
	Luo	Communication System Trainer	300	1	300	2	600
15	Basic Electronic	Frequency contrller 50Hz	300	1	300	2	600
	Lab	Osciloscope	300	1	300	2	600
16	Classromms	Internet Connector Switch	50	5	250	2	500
17	Physics	Digital Gauss Meter; 200v	300	1	300	2	600

						Daily	589.47
					Total	Mont hly	15326.21
						Yearl y	183914.50
		Lath Machine, 2HP	750	2	1500	2	3000
		Cutter Machine	300	1	300	2	600
		welding M/C	300	1	300	2	600
		Drill M/C, 1.5 HP	750	1	750	2	1500
		Grinding M/C, 1.5HP	750	1	750	2	1500
		Power Hexa M/C,1HP	750	1	750	2	1500
22	Workshop	R. Drilling M/C, 3PH, 0.37kw	750	1	750	2	1500
		R. Drilling M/C, 3PH, 0.75kw	750	1	750	2	1500
		Surface planning M/C Motor, 3HP	1500	1	1500	2	3000
		Lath Machine, 3HP	1500	8	12000	2	24000
21	Corridor	Incandescent Bulb	60	1	60	2	120
01	First Floor	Incandescent Bulb	60	10	600	2	1200
20	Yoga Meditation Hall	Incandescent Bulb	60	3	180	2	360
19	Hardware Lab	Catalyst	300	1	300	2	600
		VSWR Meter	300	1	300	2	600
		PhotoeTech	300	1	300	2	600
18	Communication Engineering Lab	Dipcot	300	1	300	2	600
	Electronics &	HDTV Trainer	300	1	300	2	600
		CRT TV 220v	100	3	300	2	600
		Regulator Power Supply;	300	1	300	2	600
		Ultasonic Interferometer, 200v	300	2	600	2	1200
		Hall Effect Set up;200v	300	1	300	2	600

Table No.6 LAB EQUIPMENT LOAD YEARLY

4.3 SOLAR POWER GENARTAION

	Detail	s of Sola	r Panel i	nstalled		Assessed		
Sr. No.	Make	Watt/ Panel	No. of Panel	installed	Factor	Annual Energy Generation	Utility Power	Total Assessed Annual Cost Saving in Rs.
1	Vikram Solar	325	63	20	5	34781	16.28	5,66,234.70

Table No.7 SOLAR POWER GENARTAION

* This is total load consumption considered approximately. Actual load consumption might be different according to actual use of power for particular time period.

Calculations:

- 1. Total Calculated Load = Yearly Daily load + Yearly Equipment's load A = 76,964+184 =77,148 units
- 2. Solar Power Generated= B= 34781 units approx...
- 3. Difference of Load calculated and Solar power generated =C= 77,148- 34,781=42,367 units

4. Yearly approximate units consumed =Electric Unit Consumed + Solar Energy Generated+ Offset Grid Export Unit

```
=18,163 + 34,781 +8,977= 61,921 units
```

5. Difference of Total Calculated Load and Yearly Load Consumed =D=77,148-61, 921=15,227 units

The difference in Total load calculated and actual units utilized is due to the fact that majority of labs are used in semester pattern remains closed or unutilized, so the difference is near about 15,227 units per year or 42 units per day.

Remarks:

- It has been observed that in college majority of electrical power consumption is through light load such as fan, FTL & power load such a etc. unnecessary use of electrical equipment must be avoided.
- As per individual department level load consumption, we understand the scope for improvement of energy saving. Hence our electricity bill will be reduced by proper load management techniques along with optimum utilization of resources.

Observations and suggestions:

- ▶ It is found that FTL, Bulbs, CFLs is installed in the facility.
- It is recommended that some tube lights in this area be switched off when sufficient daylight is available.
- > Presently, there are no reflectors installed for tube lights.
- Every light or electric gadget left on when not needed is wasting energy and money and is causing pollution that is totally unnecessary.

Don't forget to power down these things when not in use:

- ▶ Lights
- Heaters and fans (or air-conditioning)
- Printers and scanners
- Battery and phone chargers
- > Computers
- Gaming consoles
- TVs, DVD players
- Stereos
- ▶ Kitchen gadgets such as blenders, kettles, toasters etc.

4.4 Merits/Existing Features for Energy Savings

- 1. Staff vigilance.
- 2. Computers are connected in LAN.
- 3. Printers are shared in LAN.
- 4. Screen savers facility implemented for every computer.
- 5. AC's used are of three STARS.
- 6. Refrigerators are of three STARS.
- 7. Incandescent Bulbs are nowhere used.
- 8. They are replaced by CFL tubes with electronic choke.
- 9. Maximum use of natural light.
- 10. Cross Ventilation is provided in laboratory & class rooms, which reduced number of fans.
- 11. Most of the practical's are scheduled in noon time where Billing Rate in normal.
- 12. Walls are painted with off white colour to have sufficient brightness.
- 13. Solar powered street lamp is used.
- 14. LED flash light is used in Seminar hall.
- 15. PV solar system (20KW) is installed which is expected to generate 100 Unit/day.

This saves Rs. 5,66,234.70/Year

5. STUDY OF AIR CONDITIONERS

In the facility for air conditioning there is no centralized system with AHU (air handling unit), but mostly spilt air conditioners are installed.

Load of ACs was as follows:

Item	Rated Power (kW)	Qty	Voltage	Current Amp	Actual Power
ACs	4	3	406	8.4	3.5

Observations and suggestions:

- Normal air conditioning temperature should be kept as high as possible (I.e.24 d.cel.).
 By thumb rule, increase in 3 degrees in indoor air temperatures can save 1% of electricity.
- The ventilation in area can be provided with installation of natural ventilation. Natural Ventilation will also minimize the requirement of exhaust fans.

6. ENERGY CONSERVATION PROPOSALS

6.1 Providing Energy Saver Circuit to the Air Conditioners

The energy saver circuits for the air conditioners, intelligently reduces the operating hours of the compressors either by timing or temperature difference logic without affecting the human comfort. This can save around 15% to 30% of the electricity depending on the weather conditions and temperature settings.

There are total 3 split type air conditioners. It is Recommended that the old air conditioners are being replaced with new energy efficient BEE STAR labeled (3 Star and above) air conditioners in a phased manner.

6.2 Replacing Fluorescent Tube Lights (FTL) with LED Tube Lights

The CFLs and FTLs can be replaced with the LED tube lights 16 W. These changes can be made at the places where the life is higher. Usually minimum of 3 years warranty is given and approximate burning hours is 40 000. (15 years considering 8 hours per day running).

6.3 General Recommendations

- All Class Rooms and labs to have Display Messages regarding optimum use of electrical appliances in the room like, lights, fans, computers and projectors. Save electricity. Display the stickers of save electricity, save nature everywhere in the campus. So that all stakeholders encouraged to save the electricity.
- Sometime the tube lights in a class room are kept ON, even there is sufficient light level near the window opening.
- Trying to get the benefit of -01.50 rates in addition to actual rate for per unit consumption of electric motor pumping during 2200 – 0600 Hrs.
- All projectors to be kept OFF or in idle mode if there will be no presentation slides.
- All computers to have power saving settings to turn off monitors and hard discs, say after10 minutes/30 minutes.
- > The comfort/Default air conditioning temperature to be set between $24^{\circ}C$ to $26^{\circ}C$.
- > Lights in toilet area may be kept OFF during daytime.
- ➤ Use AUTOMATIC POWER FACTOR CORRECTION (APFC) Panel FOR PF improvement
- > Need to use power saver circuits for AC.

- > Need to replace FTL by smart LED Tube.
- > Need to replace ordinary bulb by LED bulb.
- > Need to replace ordinary CRT monitor by LED.
- > Need to replace ordinary refrigerator by BEE power saver refrigerator if possible.
- Out of total electricity bill paid, 53 percentages are actual energy utilized charges and remaining expense belongs to additional taxes on energy consumption.
- Recently govt. has declared the exemption on electricity duty charges for school and colleges trying to get the benefit of the same as soon as possible.

6.4 Executive Recommendations

- 1. There has to be Institute level student community that keeps track of the energy consumption. Parameters of the various departments, class rooms, halls, areas, meters, etc
- 2. Energy auditing inside the campus has to be done on a regular basis and report should be made public to generate awareness.
- 3. Need to create energy efficiency/ renewable energy awareness among the college campus i.e. solar, wind, Biogas energy. College should take initiative to arrange seminars, lectures, paper presentation competition among students and staff for general awareness.

7. REFERENCES

- 1) "Energy Management, Audit and Conservation" by Barun Kumar De
- 2) "Guide to Energy Management" by Barney L
- 3) "Energy Audits: A Workbook for Energy Management in Buildings" by Tarik Al-Shemmeri
- "Fundamentals of Energy Conservation and Audit" by Agarkar Santosh Vyankatro and Mateti Naresh Kumar
- 5) "Industrial Energy Conservation (UNESCO Energy Engineering)" by Charles MGottscha

Branch 1: Survey No. 52/1, Plot No.16, Link Road, Bhushannagar,
Kedgaon, Ahmednagar - 414005. M: +91 7020756278Branch 2: Flat No. 203, B3, Vansaaz Apartment, Be.Singapore Garden Bungalows,
Tapovan Road, Nashik - 422001. M: +91 9420643007E: director@sstechnogreen.in, W: www.sstechnogreen.inISO 9001ISO 14001ISO 45001FSSAI

GSTIN: 27ABECS0697R1ZG

AUDIT CERTIFICATE

This is to certify that an Energy Audit for **Shri Chhatrapati Shivaji Maharaj College of Engineering, Ahmednagar** has been conducted in May 2023 for year 2022-2023 to access energy costs, availability and reliability of supply of energy, energy conservation technologies and ways to reduce energy consumption.

Place: Ahmednagar

Date: 15th May 2023

ube il Dube

Certified Energy Auditor

EA-4973

Susheel Pote

Director

Il opi hidambau He / She shall be entitled to practice as Energy Auditor under the Energy Conservation Act 2001, subject to the has passed the National Certification Examination for Encryp. Auditors in 2006, conducted on behalf of the Burran fulfiliment of qualifications for the Accredited Energy Auditor and issue of certificate of Accreditation by the Bureau Controller of Examination No. 2487 This certificate is valid till the issuance of an official certificate by the Bureau of Energy Efficiency He / She is qualified as Certified Energy Manager as well as Certified Energy Auditor. National Productivity Council PROVISIONAL CERTIFICATE This is to certify that Mr. / Ms. Anil Siddhanarayan Dube (National Certifying Agency) of Energy Efficiency. Ministry of Power, Government of India. son / daughter of Mr. Siddhanarayan Dube of Energy Efficiency under the said Act. Regn. No. EA-4973 Date : 30 April 2007 Place : Chennal, India

35